유튜브 생성형 AI 라벨링 확인하세요!

지난 한 주 간의 AI 정책들을 골라 정리합니다

유튜브 생성형 AI 라벨링 확인하세요!
그는 누군가에게 그 사람이 정말 중요하게 여기는 것에 대해 잘 말하는 법을 배우는 일이 얼마나 어려운지 알고 있다.

—브뤼노 라투르, <존재양식의 탐구-근대인의 인류학>

AI 윤리 뉴스 브리프

2024년 3월 넷째 주
by. 🍊산디

목차

1. 미국 하원, 민감정보 적대국 제공 금지 법안 통과
2. UN 총회, 안전하고 신뢰할 수 있는 AI 시스템 결의안 채택
3. 유튜버라면 생성형 AI 라벨링 확인하세요!
4. 데이터, 어떻게 팔아야 잘 판 걸까? ...팔아야 하는 걸까?


1. 미국 하원, 민감정보 적대국 제공 금지 법안 통과

  • 미국 하원의 틱톡 금지법 통과에 가려 상대적으로 덜 주목받은 소식이 하나 있습니다. 데이터 브로커가 미국에 거주하는 개인의 민감정보(sensitive data)를 적대국 또는 적대국에 의해 통제되는 누군가에게 제공하는 것을 금지하는 법안이 만장일치로 하원을 통과한 것이죠.
출처:UnsplashAnne Nygård
  • 이 때의 ‘민감정보’는 한국 법이 통상 지칭하는 것보다 훨씬 광범위한 내용을 아우릅니다. 사회보장번호와 같이 정부가 개인을 식별하는 데이터나 건강정보, 결제정보, 생체정보, 유전자 정보, 구체적인 지리정보뿐만 아니라 상대방이 누구인지 알 수 있는 커뮤니케이션 내역과 통화 시간, 통화한 위치 등도 모두 민감정보에 포함됩니다. 개인적 목적으로 저장된 캘린더 일정, 사진, 동영상도 포함되고, 17세 미만 개인에 대한 정보, 인종이나 피부색, 종교에 대한 정보도 물론 포함되며, 온라인에서의 활동 정보, 나아가 앞서 언급한 정보들을 유추할 수 있도록 하는 모든 유형의 정보가 민감정보로 정의됩니다.
  • FTA 등 국가 간 무역협상을 통해 데이터의 자유로운 이동을 주장해왔던 미국은 이제 노선을 선회하여 적대국(중국, 이란, 북한, 러시아 등)으로의 데이터 흐름을 강력히 차단하려 하고 있습니다. 데이터 브로커의 데이터 반출, 틱톡 등 ‘적대국의 사업자’의 서비스 제공을 통한 데이터 취득을 모두 막음으로써 자국 국민과 산업을 보호한다는 것이죠.
  • AI의 등장으로 한층 고도화된 산업 구조는 데이터가 곧 주권임을 강변하는 듯 합니다. 변화한 국제 정세 속에서 데이터 장벽은 더욱 높아질 듯 하네요.

2. UN 총회, 안전하고 신뢰할 수 있는 AI 시스템 결의안 채택

  • UN의 193개 회원국은 ‘안전하고 신뢰할 수 있는 AI 시스템 결의안’을 만장일치로 채택했습니다. 미국이 주도한 이번 결의안은 AI의 기획부터 활용되기까지의 전 주기에 인권을 존중하고 촉진할 수 있어야 한다고 강조합니다. 안전하고 신뢰할 수 있는 AI는 UN의 지속가능개발목표(SDGs) 달성에 도움이 될 수 있다는 것이죠.
출처: UN Photo/Manuel Elías
  • AI는 2차 세계대전의 참화 속에서 적국의 암호를 해독하기 위한 계산장치로서 등장했고, 세계화의 불평등을 배경으로 성장했습니다. 기술이 심화해온 불평등을 완화하는 데 기술이 기여하기 위해서는 더 많은 국제 협력과 조율이 필요합니다.
  • 아무런 구속력 없는 이번 결의안이 군사적 목적의 AI 활용을 막거나, 범남반구에서 활발히 이루어지고 있는 데이터 노동의 불안정성을 극복하기 위한 적극적 정책으로 이어지지는 않을 것입니다. 하지만 이번 결의안이 교두보가 되어 군사 부문에 AI 활용을 제한하기 위한 국제협력으로 확대될 수 있기를 바랍니다.

3. 유튜버라면 생성형 AI 라벨링 확인하세요!

  • 유튜브 영상 제작에 생성형 AI를 활용하고 계신다면 이제부터는 라벨링을 잘 하셔야합니다. 유튜브가 생성형 AI를 비롯한 변경·합성 미디어를 이용해 실제 사람, 장소, 이벤트로 착각할 수 있는 콘텐츠를 게시할 경우 라벨링을 통해 이를 알리도록 하는 정책을 단계적으로 시행합니다. 지속적으로 라벨 표시 규정을 어기는 크리에이터는 수익 창출이 제한되거나 콘텐츠가 삭제될 수 있습니다.
  • 이번 라벨링 정책은 EU 디지털서비스법(DSA)의 시행과 대선을 앞둔 미국 정치 상황을 반영한 결과로 보입니다. 유튜브 외에도 페이스북, 인스타그램, 틱톡 등도 비슷한 라벨링 정책을 도입한 바 있습니다.
  • 흥미롭게도, 라벨링이 필요한 콘텐츠, 즉 ‘생성형 AI를 활용하여 제작된 실제로 착각할법한 콘텐츠’가 무엇인지에 대한 구체적인 결정은 유튜브의 자율적인 판단에 맡겨지게 되었습니다. 기업에게 일종의 ‘재량’이 부여된 셈이죠. 비단 이번 라벨링 정책이 아니더라도 우리 정책 환경의 플랫폼 재량에 대한 의존도는 더욱 심화되고 있습니다. 유튜브의 생성형 AI 라벨링 ‘자율규제’는 어떤 모습으로 구체화될까요?
💬
댓글
- 🤔어쪈: 오, 이로서 구글은 보다 손쉽게 사람이 직접 찍고 편집한 영상만을 AI 학습 데이터로 활용할 수 있겠군요!

4. 데이터, 어떻게 팔아야 잘 판 걸까? ...팔아야 하는 걸까?

  • 2005년에 문을 연 레딧은 사람들이 자유로운 커뮤니티 활동을 통해 광고 수익을 얻는 회사였습니다. 19년이 지난 지금, 한번도 흑자를 내지 못한 기업 레딧은 새로운 비즈니스 모델을 찾아 성공적으로 IPO를 마쳤습니다. 그 동안의 데이터를 AI 훈련용으로 판매하는 것이죠. 구글은 레딧 게시글과 댓글을 활용해 AI를 훈련할 수 있도록 하는 연간 라이센스로 6천만 달러를 지불했습니다.
  • 이용자들이 19년 간 떠들고, 업&다운 투표를 하고, 게시판(서브레딧)을 열고 운영하며 쌓인 데이터입니다. 매일 6만여 명의 이용자가 자발적으로 중재자가 되어 레딧 커뮤니티를 관리합니다. 이용자들이 자유/무료 노동으로 플랫폼 기업만 수익을 얻는 것에 문제를 제기해온 배경입니다. 흥미롭게도 레딧은 이 문제를 공모 주식 중 일부(8%)를 활발한 활동을 보여준 이용자가 구매할 수 있도록 함으로써 해결하려는 모습입니다.
  • 하지만 이로써 데이터 판매 이후 이용자들과 플랫폼 간 긴장관계가 모두 해소되었다고 평가할 수는 없을 듯 합니다. 공모 주식 배정 결정이 알려진 이후에도 회사의 ‘비즈니스 모델’에 반대하는 의견이 쉽게 발견되고 있기 때문입니다. FTC가 구글과 레딧 간 데이터 거래를 조사하기 시작한 것 역시 레딧으로서는 넘어야 할 산이겠네요. 이용자의 노동으로 기업, 주주가 수익을 얻는다는 비판에 기업은 어떻게 답할 수 있을까요?

#feedback

오늘 이야기 어떠셨나요?
여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.
남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.